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Abstract. We show that the phenomenological renormalization-group analysis based on 
the finite-sire scaling hypothesis is very effective in analysing the critical properties of the 
localization-delocalization transition (LDT) of the wavefunctions in quasiperiodic systems. 
We have applied it successfully to the LDT of the discrete Schriidinger equation with an 
incommensurate modulation potential characterized by a quadratic irrational, showing that 
different models with a common incommensurate ratio belong to the Same universality 
class iitheir polentiai functions are smooth. Moreover, there exists a one-to-one correrpon- 
dence between the whole universality classes of the LDT and the whole equivalence classes 
a i  quadratic irrationais with respect IO the modular rransiormarion. 

1. Introduction 

One-electron properties of a quasiperiodic system are of current interest in connection 
with quasicrystals (for review, see Sokoloff 1985, Hiramoto and Kohmoto 1992). A 
simple model is the following one-dimensional Schrodinger equation in the tight- 
binding approximation, which will be referred to as the discrete Schrodinger equation 
(DSE): 

- u . ~ ~ - u , + ~ + V ~ U , , =  Eu, (la) 
V.=Vf(nw++) (1b)  

where f ( x )  is a periodic knc'ion, f ( x + ! )  = f ( x ) ,  1' (>e) :he ~a:ex!la! s:reng:h i:: 
units of the transfer integral, w an irrational number and C$ the phase variable. The 
Harpermodelis aspecial case wheref(x) = 2  c o s ( 2 ~ x ) .  On theotherhand,thepotential 
function of the Fibonacci lattice is an asymmetrical rectangular wave such that its 
one-period is defined by f (x)  = B(x-oG), XE[O, 11, where 0 stands for the step 
function and wG = l / ~ ~  with T~ = (1  + d ) / 2  being the golden ratio. It should be noted 
that f!r) is analytic in the Harper mode! but not in the Fibonacci lattice, me case 
where w is a quadratic irrational is particularly important in connection with the 
quasicrystal. 

We may consider V, a modulation potential introduced into a periodic lattice. The 
spatial frequency of the modulation is given by IwI, while the period by l / lw l .  Since 
n assumes only integers, two irrationals w and w'  yield the same modulation potential 
if w ' = m f w  with m c Z .  

It has been established that the Harper model exhibits the localization-delocaliz- 
ation transition (LDT) as V is varied (Aubry and Andre 1980). All the wavefunctions 
(eigenstates) are extended if V < l  but are localized exponentially if V > 1 ;  the 
wavefunctions are critical at V =  1. Correspondingly, the energy spectrum is absolutely 
continuous, singular continuous or point according as V <  1, = 1  or >1, respectively. 
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The energy spectrum is symmetric on account of the inversion symmetry: f ( x ) =  
- f ( x  +t). The critical wavefunctions are of multifractal nature (Siebesma and 
Pietronero 1987, Hiramoto and Kohmoto 1989): their f ( a )  spectra depend on the 
energy levels and the incommensurate ratio w. On the other hand, the wavefunctions 
in the case of the Fibonacci lattice are known to be critical irrespective of the value 
of V. They are also multifractals (for the Fibonacci lattice, see the review by Kohmoto 
1987). 

A critical wavefunction of the Harper model has a hierarchical structure (Thouless 
and Niu 1983) corresponding to a similar structure of the continued-fraction expansion 
(CFE) of o = [ n , n 2 n 3 . .  .I, which is obtained by the recursive equations: n, = [ w z ]  and 
w, = n, + l /w,+,  , i = 1,2, .  . . , with w I  = w and [*] being the Gaussian symbol. The CFE 
yields a sequence of best rational approximants to o. A ‘periodicity’ in a hierarchical 
structure gives rise to self-similarity. This is the case where w is a quadratic irrational, 
which has a periodic CFE. We shall confine our arguments to this case. Then, w has 
a subsequence of best approximants M,/  N,, M I /  N 2 , .  . . such that Mk+,/ Mk and 
N k + , / N k  tend to another quadratic irrational 7 (21 )  which is rationally related to w. 
The ratio of self-similarity of the critical wavefunction is equal to T or some power 
of it. 

The LDT of the DSE was investigated with renormalization-group (RG) analysis by 

however, not rigorous and assume that n, in w = [ n,n,n, . . .] satisfy n, >> 1. A more 
rigorous argument was made by Ostlund and Pandit (1984) on the band centre state 
but the RG analysis has been implemented only in the case of the Harper model with 
w = w c .  

The critical behaviour of the LDT will not depend on the microscopic details of the 
system because the ‘correlation length‘ is divergent at the critical point. Therefore it 
is interesting to classify different systems into appropriate universality classes, which 
may depend on w, the energy levels and, also, on the analyticity of f (x) .  The aim of 
the present paper is to investigate this subject by means of numerical analysis. 

A numerical method is applicable only to finite systems and we must extract from 
the data of the systems the properties in the thermodynamical limit. An efficient method 
for the purpose is the phenomenological RG analysis (Barber and Selke 1982) based 
on the finite-size scaling hypothesis (Fisher 1971). We shall call it simply the finite-size 
scaling (FSS) analysis. It has been applied successfully to the Monte Carlo study of 
phase transitions. In this paper, we shall apply it to the critical properties of the LDT 
of the DSE. 

In section 2 we introduce an order parameter characterizing the LDT and define 
several critical exponents. Then we examine the FSS hypothesis. We show in section 
3 the procedure for the FSS analysis, which we apply to the LDT of the Harper model 
in section 4 and to the DSE with a smooth potential function in section 5.  We classify 
in section 6 the DSE~ with different incommensurate ratios into universality classes 
with respect to the LDT. In section 7, we discuss briefly remaining subjects on the LDT 
and, finally, conclude this paper. 

s.;s!=:. (1982) a-d, i-depende-t!y, bj Thou!ess and Nii; (!98?). ELI?: a:g;ments a x ,  

2. The order parameter, critical exponents and the FSS hypothesis 

We calculate numerically the wavefunctions of finite systems with periodic boundary 
condition (PBC). To employ the PBC, we must replace w by its rational approximant 
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ij = M / N  with M and N being integers. Then the system size is equal to N, which 
increases geometrically if the sample sequence associated with a suitable sequence of 
best approximants to w is used. This property fits the FSS analysis. 

Let U =(U,, u 2 , .  . . , u N )  be a normalized eigenvector. Then the ‘sum over states’ is 
defined by 

N 

z N ( q ) =  1un12q (2) 
“ = I  

with q being a real parameter. The generalized participation ratio is defined with ZN(q) 
as 

M q )  = { z N ( q ) l ” ( ’ - q ) .  (3) 
I N ( 2 )  is the conventional participation ratio, which has been used in the investigation 
of the Anderson localization in a disordered system (Thouless 1974). It can be shown 
generally for q > O  that IN(q) gives a measure of the extension of the wavefunction in 
the localized regime, while it grows linearly with N in the extended regime. 

We will digress for a short time to thermodynamic properties of the king model. 
Let M be the instantaneous magnetization of the system composed of N spins. Then 
the time average of M 2  is written for T >  T, as (M2)0c ,y /N with ,y being the magnetic 
susceptibility. On the other hand, ( M 2 )  tends in the thermodynamic limit, N + m ,  to 
u2 with u = ( M )  being the average magnetization, which is non-vanishing only when 
T < T , .  

It follows that l N ( q ) / N  has similar properties to (M2) in the Ising model and we 
may identify the quantity, 

4 q )  = {Mq) /N)”2  (4) 
with the order parameter of the LDT. The thermodynamic limits of I N ( q )  and uN(q)  
are denoted as l ( q )  ( = L ( q ) )  and u(q) (=u“(q)), respectively. l ( q )  corresponds to 
the magnetic susceptibility of the king model. l ( q )  (or u(q))  is non-trivial only in the 
localized (or extended) regime. 

We shall confine our arguments to the ground-state wavefunction of the DSE and 
assume that it exhibits a LDT at V =  V,; V C  V, or V >  V, is the extended or localized 
regime, respectively. The three critical exponents are defined as in the case of the king 
model: 

f-lul-’ l ( q ) -  U-’ and u ( q ) - ( - u ) P  ( 5 )  
where f is the correlation length and U = ( V -  VJ/ V,. f is identical to the localization 
length in the localized regime (Siebesma and Pietronero 1987). Note that p and y are 
dependent on q, p = p ( q )  and y =  y(q) ,  while Y is not. 

Our arguments in the rest of this section are not restricted to the one-dimensional 
system. On the basis of a similar consideration to that in statistical mechanics (Fisher 
1971). we assume the following FSS relationship for a finite but large system: 

(6) 2 ~ - ~ I ” = F ( L I I ~ ~ )  
u N ( q )  L 

where d stands for the dimensionality of the system and L the linear dimension; 
N = Ld. Then the size dependence of uN(q)  obeys a power law at the critical point, 
o = O  ( V =  VJ: U & ( ¶ ) =  F(0)LY/’-d and, consequently, I N ( q )  = F(0)L”’. We shall 
call F ( x )  the scaling function. 

The behaviour of F ( x )  in the limit x + m  (or -m) describes the property of l ( q )  
(or u(q)) in the localized (or extended) regime, so that F ( x )  must obey asymptotically 
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the power law x-’ (or (-x)”~-’). Therefore we can conclude the following hyper- 
scaling law for the exponents: 

2P Y - -+-=d.  
Y Y  

(7) 

That is, only two of the three exponents are independent of each other. Note that p / v  
and y / v  are the exponents associated with the relationships of u(q) and I(q)  to 5, 
respectively; U - go/” and I- ty/”. 

We will refer briefly to the multifractal property of the critical wavefunction 
(Siebesma and Pietronero 1987, Hiramoto and Kohmoto 1989). Let S ( q )  be the 
thermodynamic limit of log(Z,(q))/log N at V =  V,. Then it is related to the general- 
ized fractal dimension Dq (Halsey et al 1986) of the critical wavefunction by S(q)  = 
(1 -q)D, ,  which together with equation (3) and I,(q) = F(O)L’/”yields D, = y ( q ) / u .  
Thef(a)  spectrum characterizing the multifractal property of the critical wavefunction 
is given as the Legendre transform of S(q).  It follows that the critical properties of 
the LDT are dominated by the fractal properties of the critical wavefunction. Note that 
D, depends on q, in contrast to the case of a simple fractal. 

3. The FSS analysis 

Let us define a function of two size-variables by 

Then it takes y /  v at V = V, for any pair {N, N’} provided that N and “are sufficiently 
large. Therefore we can determine y /  Y and V, as the ordinate and the abscissa of the 
common crossing point (the fixed point) ofthe plots of R [ N ,  N’] versus V for different 
pairs of N and N’.  This is the essence of the FSS analysis (Barber and Selke 1982). 

On the other hand, the exponent U can be determined by the condition that the 
plot of ~ = u % ( q ) L ~ - ~ ~ ”  versus x- L””u is represented by a single curve, y =  F ( x ) ,  
for different values of N. This plot shall be referred to as the FSS plot. In order to see 
the asymptotic behaviour of F ( x )  in the limit x +  *m, it is convenient to investigate 
the logy versus loglxl plot; it will exhibit a linear variation in the region 0 < loglxl< 
but will be nearly constant (=log F ( 0 ) )  in the region -m<loglxl <O. The slope in the 
asymptotic regime x+m (or -m) is equal to - y  (or 2p). This change of behaviour 
from the constant regime to the linear-variation one shows the crossover from the 
critical regime, 6 >> L, to the thermodynamic one, [<< L. 

The above-mentioned crossover can be observed in the log u N ( q )  versus log L plot 
as well. The abscissa of the crossover point is approximately equal to log 5, so that it 
varies with V.  This allows us to determine the dependence of 5 on V, which was used 
by Siebesma and Pietronero (1987) in their numerical investigation of 5 = (( V ) .  

4. Application of the FSS analysis to the Harper model 

We shall assess the effectiveness of the FSS analysis by applying it to the Harper model, 
for which several exact results are known. We assume U = wG ( =1hG) .  It is well known 
that 7,=[111.. .I and a best approximant to oG is written as Fk- , /Fk,  with Fk being 
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Fibonacci numbers: Fk are generated by the recursion relation Fk+, = Fk + Fk-, with 
the initial conditions Fo = 0 and Fl = 1. Note that lim Fk+, /Fk = T ~ .  The Fibonacci 
sequence, { F d ,  bas a three-cycle parity sequence, {+ - -+ - -+...}. Consequently, 
the sequence {u,(q)lN = Fk, k = 1,2, . . .} is divided into three subsequences with. 
different scaling functions. The growth rate T of the size N in each subsequence is 
given by ( T ~ ) ~  ( = 2 + f i = l i m  Fk+JFk) .  

We plot ~ ~ ( 2 )  versus V in figure 1 for N =  F,$, i=4-8.  The size dependence of 
~ “ ( 2 )  is quite similar to a plot of ( ( M 2 ) ) ’ / 2  in the case of the king model. uN(2) tends 
rapidly to u(2) as V falls away from the critical point while it decreases in proportion 
to N-II2 as V goes beyond the critical point. 

0 2584 
A 10946 
CI 46368 

0.8- 

0 . 6 -  

GM 

V 

Figure I. The plots of ( ~ ~ ( 2 )  versus V for samples with different s~zes. We can observe 
that U&) will converge in the thermodynamic limit to ( ~ ( 2 ) .  

we show i!? fig?lre 2 R[.V, A“j versI?s v in the vicinitv J of -t V =  Vc, From this p!n! 
we have determined V,, yielding V, = 1 to six digits, in agreement with the exact result. 
The critical exponent y /  U has been determined to be 0.329, where the next digit has 
been rounded considering the numerical error. The accuracy of the exponent is lower 
than that of V, because a small error in V, gives rise to a large error in the exponent. 

The FSS plot is shown on a linear scale in figure 3(a) and on a logarithmic scale 
in figure 3(b ) .  The FSS plot in figure 3(a) scatters least when U is chosen to be 1.00. 
Only the data for N=2,584 and 46,368 are plotted in figure 3(6), the log-log plot. 
We have confirmed that the data for N = 10,946 are in good agreement with these 
data. However, the data for N =  144 and 610 deviate slightly in the region lu1>0.05, 
which may be accounted for by introducing a correction term to the FSS relation. In 
any case, the FSS plot confirms the FSS hypothesis formulated by equation (6). The 
three critical exponents have been determined as U = 1.00, y = 0.329 and P = 0.336. 

Aubry and Andre (1980) have obtained an exact expression for f in the localized 
regime: f = I / log  V, V >  1.  On the other hand, Siebesma and F’ietronero (1987) obtained 
it in the extended regime by a numerical investigation: f= l / l log  VI, V < l .  These 
results yield f = l / l u l  for IuI<< 1, so that u = l .  Thus, our calculation confirms these 
results. 
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1.2 

1.0 

0.8 + 1610.109461 * 12584.463681 

0 . 6  - 
5 - 0.4  
Q 

0 . 2  

0 

- 0 . 2  
0.99 1.00 

V 
1 

Figure 2. The plots of R [ N ,  N I  venus V for several pairs of N and N. All the plots 
cross at one point, whose abscissa and ordinate give the critical potential strength V, 
(=LOO) and the critical exponent Y I D  (=0.329). 

I 
1 10 10‘ 

l o g l l Y I L ~ ’ “ l  

Figure 3. The FSS plot in the linear scale ( a )  and the logarithmic scale (b). In ( 0 )  the data 
for different sires are represented best by a single curve when Y is chosen to  be 1.00. Note 
that d = 1 and L =  N. In ( b )  the abscissa stands forlog(lvlL‘/”). so that the scaling funnion 
yields two branches; the upper or the lower branch refers to u < O  or v > O ,  respectively. 
Two broken lines show the power laws in the asymptotic regime lulL‘/”>, I .  Their slopes 
are given by 28 and -7. On the other hand, the asymptote in the limit log(lvlL‘~”)+-m 
(or, equivalently. lulL1/’+O) is a horizontal line whose height is equal to log F(0) .  

We have calculated S(9) as a function of 9, showing a nonlinear dependence on 

and Kohmoto (1989) and is not reproduced here. The critical wavefunction obtained 
numerically is shown in figure 4(a) .  The wavefunction appears to scale with T~ but 
the exact scale is found to be ( T ~ ) ~ ,  which is consistent with the three-cycle nature of 
the sequence. 

q. f i e  :esu!!icgJ(c) spectrum W2S in good agreement with figcrc h!!?) in Hirlmo!G 
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F i g u r e l  The ground state wavefunction of the Harper models at the critical point V =  1.0 
for(o) w = wo (=l lro),  ( b )  w = l l r s .  (e) w =wO/&and(d) w = 2 w 0 .  Each wavefunction 
is obtained from a finite system with size N by assuming the PBC. The sites of the system 
are niiiiibcied from i io x do and woiv5 are ~-eqoiva:en; and the wnve&iinciioas ( 0 )  

and (e) are hardly distinguished except far the scales of the abscissa. Note that 136412584 - 
&/(vO)’. The wavefunctions are approximately self-similar with the ratios ro, 4. vo and 
Z + 8 ,  respectively. The peak heights of the outermost satellites in ( a )  deviate appreciably 
from others on account of the PBC. 

S. The DSES with smooth potential functions 

The potential function J ( x )  is expanded into a Fourier series as 

m 

f ( x )  = a,+ a, c o s ( 2 d a )  
k = l  
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where we have assumed for brevity thatf(x) is even. Using equation (9) we can expand 
the modulation potential V, into 'plane waves', whose wavenumbers are given by kw 
with kEZ.  

The energy spectrum of the Harper model is pure on account of its 'self-duality' 
(Aubry and Andre 1980). An absolutely continuous spectrum and a point spectrum 
can coexist at some potential strength in other models (Suslov 1982, Soukoulis and 
Economou 1982, Hiramoto and Kohmoto 1989). 

We shall investigate the LDT of the ground state of the DSE with a smooth potential 
function. We take four models with inversion-symmetric potential functions f ; ( x ) ,  
i = 1-4, for which the Fourier component a. with even n vanishes. The first two have 
only two harmonics with (1) a ,  = 1 and a, = f and (2) a, = f and a, = 1. The third model 
is a periodic superposition of Gaussian functions: 

+m 

f , ( x ) =  (-1)"'exp(-a(x-m/2)') (10) 
m=-m 

whose Fourier coefficients are rapidly decreasing: a>,,,+, ocexp(-?r2(2m + 1)2 /n ) .  The 
parameter a is chosen to be 8a2/log 2 so that aJa,  =f .  The fourth model is given by 
equation (9) with aZm+, =(-1)"/(Zm+l)', m=O, 1 , 2 , ,  ,. f ; ( x ) ,  i=1-3 ,  are analytic 
butf,(x) is only smooth (the C' class). In fact,f4(x) is a 'parabolic wave', which is a 
smooth and periodic junction of convex parabolas and concave ones. In order to 
compare with the Harper model, we shall normalize the potential functions of these 
models so that they satisfy fmax = -f mm . = 2. 

We have implemented the FSS analysis for these four models with w = wo and 
determined V, and the critical exponents. The results for V, of the models 1-4 are 
0.539 997,0.445 009,0.496 614, and 1.086 734, respectively, which are all different from 
V, ( = I )  of the Harper model; V, has a tendency to have a smaller value if the curvature 
of f ( x )  at its minimum is larger. In contrast, the critical exponents U and y(2) are 
found all to be in agreement with those of the Harper model within the numerical 
accuracy which is better than 0.001. We have found also that the critical wavefunctions 
of these models are hardly distinguished from figure 4(a) by inspection. Therefore, 
the Harper model and the present four models belong to a single universality class 
with respect to the LDT. 

We have implemented the FSS analysis for the fifth model, which has the following 
analytic potential function: 

Figure 5. A comparison of the potential function of the Harper model ( a )  and a model 
including third-order harmonics ( b ) .  The modulation period is taken to be ro. The valuer 
of the potential at the lattice points are shown by horizontal bars. 
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This is not inversion-symmetric. This model has been found to belong to the same 
universality class as that of the Harper model. Thus, we can conclude that the DSES 

with smooth potential functions and a common w all belong to a single universality 
class. We should note in this respect that Suslov (1982) made a persuasive argument, 
though not rigorous, that v is universally equal to 1. 

The potential functionf,(x) is compared in figure 5 with that of the Harper model. 
It is remarkable that the two D S E ~  belong to the same universality class regardless of 
the large difference in the potential function. 

6. The universality classes of the LDT of the DSE with a quadratic irrational as its 
incommensurate ratio 

We confine our arguments to the case of the Harper model because the higher-order 
harmonics in the potential function are indifferent to the critical properties of the LDT. 

We consider first the case w = 1 / ~ ~  with T ~ =  1 + f i  (=[222..  .]) being the silver ratio. 
The critical exponent y ( 2 )  has been determined to he 0.340, so that this model belongs 
to a different universality class from that of the case of w = oG . The critical wavefunction 
is shown in figure 4 ( b ) .  It has a self-similarity with the scale ( rs )2  and its profile is 
markedly different from figure 4 ( a ) .  

A later term of the CFE of w is related to a long-range behaviour of the critical 
wavefunction. Therefore, it is expected that two Harper models with ratios w and w' 
belong to the same universality class if o and w' have a common tail in their C F E ~ .  
This is expected also from the renormalization-group structure of the LDT (Suslov 
1982, Thouless and Niu 1983, Ostlund and Pandit 1984). A necessary and sufficient 
condition for two quadratic irrationals w and o' to have a common tail is that they 
are related by the modular transformation (Hardy and Wright 1938) 

If this relation is satisfied, we shall say w and o' are M-equivalent. Since GL(2, Z) is 
a group, the set of all the quadratic irrationals are grouped into equivalence classes 
which are disjoint. Thus we have arrived at the conjecture that an equivalence class 
of quadratic irrationals corresponds to a universality class of the LDT. 

The case w = 1/(1+ T ~ )  has the same period as that of wG because w = 1 -wG but 
the case w = 1/(2+~,)  (=w,/&) has a different period. The latter w is M-equivalent 
LU w g  b i n ~ ~  o = ~ w i  I I . . .j. 1 IIC SIIIICX~ W ~ V C L U ~ ~ C L W I ~  LUI  ~ L I S  ~ a u u  LS wu~rai {ab m o w n  
in figure 4 ( c ) )  to that in the case of w = w G .  On the other hand, 20, (=[3444.. .I), 
the second harmonic to w G ,  is not M-equivalent to wG and the critical wavefunction 
in this case is markedly different from that of w, as shown in figure 4 ( d ) ;  the ratio of 
self-similarity is equal to (T)' with T = 2 + &  ( = [ 4 4 4 . .  .I). We have investigated several 
non-trivial pairs of M-equivalent quadratic irrationals and confirmed -that the critical 
wavefunctions are similar in each pair, so that the above-mentioned conjecture has 
been verified numerically. 

We should note at this point that this result is quite similar to the one which has 
been established in the theory of the critical property of the circle map with respect 
to the transition from quasiperiodicity to chaos (Ostlund er a1 1983). 

.^ -:___ ~ - rn - . *<  1 n- ___^. :-.. '---A!-:---.:-:- -:-:I .L 
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7. Discussions and conclusions 

We have concentrated up to this point on the ground-state wavefunction of the DSE. 
The DSE with an inversion-symmetric potential function has an eigenstate at E = 0, 
the band centre. We have implemented the FSS analysis for the LDT of the band-centre 
wavefunction and obtained similar results on the universality to the case of the ground 
state. The critical exponent U of the centre state has been always equal to 1. On the 
other hand, y ( 2 )  has a different value from that of the ground state ofthe same model. 
For example, y ( 2 )  = 0.612 when w = oo. The same value was obtained for this case 
by Evangelou and Economou (1991). Our result is consistent with the fact that the 
f(n) spectrum is different for the ground state and the centre state (Hiramoto and 
Kohmoto 1989). These results show that the ground state and the centre state belong 
to different universality classes with respect to the LDT. 

The energy spectrum of the DSE has an infinite number of gaps and the ground 
state (or the centre state) is a representative of the edge states (or the centre states) 
of the sub-hands. All the edge states (or the centre states) have a common f(a) 
spectrum in the case of the Harper model (Hiramoto and Kohmoto 1989) and there 
are no reasons why this does not hold in the case of the DSE with a smooth potential 
function. 

tions, which we shall call smooth models. We consider briefly non-smooth models. A 
representative of them is the Fibonacci lattice. It exhibits a remarkably different 
behaviour from the Harper model with respect to the localization properties (Hiramoto 
and Kohmoto 1992), so that it cannot be incorporated in any universality class including 
smooth models. 

The potential function of the Fibonacci lattice is discontinuous and we should 
consider next a model with a continuous but non-smooth potential function. A simple 
model with this property is the one whose potential function is a triangular wave. We 
have performed the FSS analysis for the ground-state wavefunction of this model and 
found that V, = 0. That is, the wavefunction is localized unless V = 0. Moreover, we 
have found that the growth of 5 and / when V (>O) tends to 0 does not obey the 
power law but the exponential law, 6, / - exp( e /  V). This means that V = 0 is an essential 
singularity. On account of the exponential law, we have to redefine U as U = exp(-l/ V ) ,  
where U is the variable appearing in equations ( 5 )  and (6 ) .  The FSS plot of the present 
model is shown in figure 6.  The exponent y / v  has been found to be equal to 1, which 
is consistent with the fact that ‘the critical wavefunction’ of this model is not a fractal 
but a simple Bloch state (U. = I/m). 

The scaling functions of thermodynamic systems belonging to a single universality 
class are believed to be universal provided that the relevant variables are normalized 
appropriately. Moreover, there exists one universal amplitude ratio for each scaling 
law among the critical exponents (Aharony and Hohenberg 1976). We can expect that 
to be true also for the LDT of quasiperiodic systems. This subject will be discussed 
elsewhere. 

The FSS analysis is quite versatile, in contrast to the analytical method. It is not 

We have concentrated our considerations on mnde!s with smoo!!! po!en!ia! func- 

difiCE!!, fer exzmp!e, !e zpp!y i! !e higher dimension.! :..siper;.odiG systems 2nd F e  
are starting research along this line. 

In conclusion, we have successfully applied the FSS analysis to the LDT of the DSE 
with a smooth potential function and an incommensurate ratio being a quadratic 
irrational and found that there exists a one-to-one correspondence between the whole 
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Figure 6. The FSS plot of the model with the potential function of the triangular wave. 
The variable U in the abscissa is defined as U =enp(-I/Vj. n e  'critical exponent' Y in 
c-v- '  IS ' determined as 1.84, while y / v =  1.00. 

universality classes of the LDT and the whole equivalence classes of quadratic irrationals 
with respect to the modular transformation. 
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